A Finite-dimensional Approach to Wavelet Systems on the Circle
نویسندگان
چکیده
Motivated by recent developments in the study of finitedimensional frames, this work develops an independent theory of finitedimensional wavelet systems on the circle. Using natural translation and dilation operators, trigonometric polynomial, orthonormal scaling functions are constructed which give rise to finite-dimensional multiresolution analyses and, consequently, orthonormal wavelet systems. It is shown that the finite-dimensional systems so constructed can lead to arbitrarily close approximation of square-integrable functions on the circle. Departures from the existing theory of periodic wavelets are encountered, e.g., the finite-dimensional equivalent of the Smith-Barnwell equation describes both a necessary and sufficient condition on a candidate low-pass filter for the existence of an orthonormal scaling function. Moreover, this finitedimensional framework allows for a natural analog to the Shannon wavelet, in contrast to the classical periodic wavelets.
منابع مشابه
Cyclic wavelet systems in prime dimensional linear vector spaces
Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملA unified theoretical harmonic analysis approach to the cyclic wavelet transform (CWT) for periodic signals of prime dimensions
The article introduces cyclic dilation groups and finite affine groups for prime integers, and as an application of this theory it presents a unified group theoretical approach for the cyclic wavelet transform (CWT) of prime dimensional periodic signals.
متن کاملApplication of Convolution of Daubechies Wavelet in Solving 3D Microscale DPL Problem
In this work, the triple convolution of Daubechies wavelet is used to solve the three dimensional (3D) microscale Dual Phase Lag (DPL) problem. Also, numerical solution of 3D time-dependent initial-boundary value problems of a microscopic heat equation is presented. To generate a 3D wavelet we used the triple convolution of a one dimensional wavelet. Using convolution we get a scaling function ...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کامل